Possiamo contare sulla “intelligenza collettiva”?

>

L'intelligenza collettiva
può ridurre
le diagnosi mediche errate

Un team di ricerca del Max Planck Institute for Human Development, dell'Istituto di scienze e tecnologie della cognizione del Cnr e della Norwegian University of Science and Technology ha sviluppato un approccio basato sull’intelligenza collettiva per aumentare l'accuratezza delle diagnosi mediche: emerge che una soluzione completamente automatizzata aumenta significativamente l'accuratezza diagnostica. Lo studio è stato pubblicato sulla prestigiosa rivista PNAS

Si stima che ogni anno negli Stati Uniti 250.000 persone muoiano per errori medici evitabili: molti di questi errori sono imputabili a falle del processo diagnostico. Un modo efficace per aumentare l'accuratezza diagnostica è quello di combinare le diagnosi di più medici in una diagnosi collettiva. Tuttavia, nell’ampio contesto della medicina clinica generale, non esistono metodi affidabili per aggregare diagnosi indipendenti. Un team di ricerca del Max Planck Institute for Human Development, dell'Istituto di scienze e tecnologie della cognizione del Consiglio nazionale delle ricerche di Roma (CNR-ISTC) e della Norwegian University of Science and Technology hanno recentemente sviluppato una soluzione completamente automatizzata utilizzando metodi di intelligenza artificiale e di ingegneria della conoscenza.

I ricercatori hanno testato la loro soluzione su 1.333 casi medici forniti da The Human Diagnosis Project (Human Dx, https://www.humandx.org*), ognuno dei quali è stato diagnosticato in modo indipendente da 10 medici. La soluzione collettiva ha aumentato in modo sostanziale l'accuratezza diagnostica: i singoli partecipanti hanno raggiunto il 46% di accuratezza, mentre l'unione delle decisioni di 10 partecipanti ha aumentato l'accuratezza fino al 76%. I miglioramenti sono stati osservati per tutte le specialità mediche, i sintomi principali e i livelli di inquadramento dei partecipanti. "I nostri risultati dimostrano come l'intelligenza collettiva possa essere utile per migliorare i servizi sanitari e salvare vite umane", afferma il primo autore Ralf Kurvers, ricercatore senior presso il Center for Adaptive Rationality del Max Planck Institute for Human Development.

È noto che l'intelligenza collettiva aumenta l'accuratezza delle decisioni in molti settori, come le previsioni geopolitiche, gli investimenti e la diagnostica in radiologia e dermatologia. Tuttavia, l'intelligenza collettiva è stata applicata principalmente a compiti decisionali relativamente semplici. Le applicazioni a problemi più complessi e aperti, come la gestione delle emergenze o la diagnostica medica generale, sono in gran parte assenti a causa della difficoltà di integrare input non standardizzati provenienti da persone diverse. Per superare questo ostacolo, sono state utilizzate tecniche di intelligenza artificiale come i grafi semantici di conoscenza e il natural language processing, riuscendo a standardizzare e allineare le diagnosi mediche tramite l'ontologia medica SNOMED CT, una terminologia clinica multilingue completa.

"Un contributo fondamentale del nostro lavoro è che, pur mantenendo la centralità delle diagnosi fornite dall'uomo, le nostre procedure di aggregazione e valutazione sono completamente automatizzate, evitando possibili distorsioni nella generazione della diagnosi finale e consentendo al processo di essere più efficiente in termini di tempo e di costi", aggiunge Vito Trianni del CNR-ISTC.

I ricercatori stanno attualmente collaborando - insieme ad altri partner - nell'ambito del progetto HACID per portare la loro applicazione più vicina al mercato. Il progetto, finanziato dall'UE, esplorerà un nuovo approccio che riunisce esperti umani, rappresentazione della conoscenza e ragionamento automatico, al fine di creare nuovi strumenti per il supporto alle decisioni in vari settori. L'applicazione della tecnologia HACID alla diagnostica medica illustra una delle tante opportunità di trarre vantaggio da un sistema sanitario basato sulla tecnologia digitale e su dati accessibili.

La scheda

Chi: Istituto di scienze e tecnologie della cognizione del Consiglio nazionale delle ricerche di Roma (Cnr-Istc), Max Planck Institute for Human Development, Norwegian University of Science and Technology

Che cosa: Kurvers, R. H. J. M., Nuzzolese, A. G., Russo, A., Barabucci, G., Herzog, S. M., & Trianni, V. (2023). Automating hybrid collective intelligence in open-ended medical diagnostics. Proceedings of the National Academy of Sciences of the United States of America, 120(34), Article e2221473120. link https://doi.org/10.1073/pnas.2221473120 *

[* N.d.R.> Documentazione/ Link/ Indirizzi presenti nella nota CNR originale e/o disponibili sui siti segnalati **]

≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈
Da/ Fonte/ Titolare»
CNR
Comunicato stampa 88/2023
Roma, 24 ottobre 2023


<
Estratto

Fonte dei dati, informazioni, procedure e documenti sono reperibili presso siti web/portali, esterni, ai link **»

Consiglio nazionale delle ricerche (CNR)
www.cnr.it

Istituto di scienze e tecnologie della cognizione (Cnr-Istc)

https://www.istc.cnr.it/

Max Planck Institute for Human Development
https://www.mpib-berlin.mpg.de/en

Norwegian University of Science and Technology
https://www.ntnu.no/

Human Dx
https://www.humandx.org


<
Link/siti
esterni non collegati

^Fonte» CNR» Cmn_24ott2023=RS_2023-10-25»
RS non è titolare dei contenuti raccolti, come documenti di pubblico dominio, e conservati quale documentazione personale. Il testo non riveste carattere di ufficialità e non è sostitutivo in alcun modo delle pubblicazioni ufficiali, che prevalgono in casi di discordanza. Per una documentazione certa o altre informazioni si deve fare riferimento ai titolari dei contenuti, prendere visione dei documenti/siti ufficiali, contattare gli enti citati. La documentazione raccolta non è e non deve essere letta come consulenza specialistica e/o legale. Si consiglia sempre di consultare direttamente l’ente/gli enti citati, sindacati/patronati/CAAF o specialisti qualificati/professionisti abilitati per pareri, consulenze e/o assistenza. Vi possono essere limiti/condizioni alla partecipazione. Negli indirizzi mail sostituire [at] con @. Evidenziature e formattazione possono essere non originali.


<
< N.d.R.

Documentazione correlata e/o richiamata»


<
Link/siti
interni

» www.reporterscuola.it -
-

-

-

-

-

-

-

-

-

-

-

-

-

-

-