Stato "chirale" delle molecole
Fotografato per la prima volta. |
> |
Fotografato per la prima volta lo stato "chirale" delle molecole su scala atomica Un team di ricerca internazionale guidato dall’Istituto di fotonica e nanotecnologie del Consiglio nazionale delle ricerche (CNR-IFN) di Milano ha utilizzato un approccio innovativo per indagare la chiralità di una molecola, una proprietà essenziale per sviluppare soluzioni tecnologicamente innovative nei campi della scienza dei materiali, della farmaceutica, e nei processi di catalisi. Lo studio, i cui risultati sono pubblicati su Physical Review X, è stato condotto presso i laboratori del Sincrotrone Elettra di Trieste in cui si trova laser a elettroni liberi FERMI: uno strumento di ultima generazione grazie al quale è stato possibile, per la prima volta, “fotografare”, nel corso di un processo ultraveloce, la proprietà della chiralità a livello di singoli atomi. “Una molecola chirale non è sovrapponibile alla sua immagine speculare: in altre parole, è una molecola che non ha una simmetria speculare, e che esiste in due forme diverse, chiamate enantiomeri, non sovrapponibili tramite rotazioni o traslazioni”, spiega Caterina Vozzi, direttrice del CNR-IFN. “Comprendere tale proprietà è importante per molti aspetti della chimica, della biologia e della fisica: la reattività chimica e l’attività biologica e farmacologica delle molecole chirali, infatti, possono variare in modo significativo a seconda della configurazione degli enantiometri. Nelle applicazioni con queste molecole complesse, è quindi importante capire come ogni atomo contribuisca alla chiralità totale, soprattutto durante le reazioni chimiche”. Nello studio, è stata analizzata la variazione nel tempo delle proprietà chirali di una molecola, utilizzando la radiazione prodotta da un laser a elettroni liberi (FEL), una tecnologia all'avanguardia che consente di generare impulsi di luce estremamente intensi e brevi, della durata di pochi femtosecondi (1 femtosecondo corrisponde ad un milionesimo di miliardesimo di secondo). “Il laser a elettroni liberi FERMI è l'unico al mondo in grado di produrre impulsi di luce polarizzata circolarmente capace di sondare questi fenomeni. Questo tipo di luce è in grado di fornire informazioni dettagliate sulla struttura e sulla dinamica delle molecole, aprendo nuove prospettive nella ricerca di base e applicata”, aggiunge Oksana Plekan, ricercatrice di Elettra Sincrotrone Trieste, co-autrice dello studio. “In questo studio abbiamo dimostrato come cambia la chiralità di una molecola durante un processo ultraveloce quando la osserviamo dalla prospettiva degli atomi che la compongono. Questa capacità di osservare la chiralità da più punti di vista è assimilabile alla visione stereoscopica nell’uomo, grazie alla quale possiamo percepire la profondità e la tridimensionalità del mondo che ci circonda,” ha dichiarato Davide Faccialà, ricercatore presso il CNR-IFN e primo autore dello studio. “La tecnica che abbiamo dimostrato ci permette dunque di osservare in tempo reale come cambia la chiralità di una molecola con un livello di dettaglio senza precedenti, aprendo nuove strade per la comprensione delle proprietà chimiche e fisiche delle molecole chirali nelle reazioni chimiche”. Lo studio ha dimostrato l'importanza di combinare le competenze in diversi campi scientifici per raggiungere risultati innovativi nella ricerca. Alla ricerca hanno contribuito anche l’Istituto di struttura della materia del Consiglio nazionale delle ricerche (CNR-ISM), il Centre national de la recherche scientifique e l’Università di Bordeaux (Francia), l’Università di Nottingham (UK), il Deutsches Elektronen-Synchrotron e l’Università di Amburgo (Germania), il Politecnico di Milano (Italia), l’Università di Nova Gorica (Slovenia), il Sincrotrone Soleil (Francia) e l’Università di Tokyo (Giappone). Didascalia immagine: La scheda Chi: Istituto di fotonica e nanotecnologie del Consiglio nazionale delle ricerche (Cnr-Ifn) di Milano e Sincrotrone Elettra di Trieste con il contributo di: Istituto di struttura della materia del Consiglio nazionale delle ricerche (Cnr-Ism), Centre national de la recherche scientifique (Cnrs), Università di Bordeaux, Università di Nottingham, Deutsches Elektronen-Synchrotron, Università di Amburgo, Politecnico di Milano, Università di Nova Gorica, Sincrotrone Soleil e Università di Tokyo. Che cosa: articolo "Time-resolved chiral x-ray photoelectron spectroscopy with transiently enhanced atomic site selectivity: A free-electron laser investigation of electronically excited fenchone enantiomers”, Physical Review X (Vol. 13, No. 1), link: https://link.aps.org/doi/10.1103/PhysRevX.13.011044 * [* N.d.R.> Documentazione/ Link/ Indirizzi presenti nella nota CNR originale e/o disponibili sui siti segnalati **] ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ |
<
|
Fonte dei dati, informazioni, procedure e documenti sono reperibili presso siti web/portali, esterni, ai link» Consiglio nazionale delle ricerche (CNR) Istituto di fotonica e nanotecnologie del (CNR-IFN) Istituto di struttura della materia (CNR-ISM) Sincrotrone Elettra di Trieste Politecnico di Milano Centre national de la recherche scientifique (Cnrs) Università di Bordeaux Università di Nottingham Deutsches Elektronen-Synchrotron Università di Amburgo Università di Nova Gorica Sincrotrone Soleil Università di Tokyo
|
< |
^Fonte» Web» _ MAR2023=RS_2023-03- » |
<
|
» www.reporterscuola.it -
-
-
-
-
-
-
-
-
-
-
-